HIGH LEVEL DESIGN AND SYNTHESIS

Yatin Hoskote Intel labs ESWEEK Sept 2013

Acknowledgements: SoC Technology and IP, Design Technology Solutions

HLD and HLS at Intel

Multiple teams using HLS

- Typically see 3X productivity gains for similar QoR
 - Algorithmic designs
- Sample results:

	Design A	Design B	Design C
QoR improvement	+7%	0%	+20%
Design TAT	3X	2X	2X
Validation TAT	7-10X	4X	5X
Simulation improvement	33X	10-30X	10X+

HLD and HLS at Intel

Some barriers to adoption for HLS

- Lack of SystemC expertise in users
- Steep learning curve on the tools
- Technology advanced but methodology needs work
- Integration into existing design flow

Other HLD efforts:

Use of virtual platforms for software development

High level models for functional validation

Performance verification uses custom models

SYSTEMC DESIGN ENV AND DESIGN AIDS

STANDARDIZATION ACROSS TOOLS, LANGUAGES

INTEGRATION INTO FLOWS

EQUIVALENCE VERIFICATION, SYSTEMC FV AND VALIDATION

EARLY ESTIMATION ACCURACY: AREA, PERFORMANCE, POWER

CO-DESIGN SUPPORT, MEMORY ANALYSIS ARCH EXPLORATION

SINGLE SOURCE MODELS

THANK YOU

