State-of-the-art of HLS and What is Ahead

Andres Takach
Senior Architect
Overview

• High-level Synthesis and Verification at Calypso

• Adoption and Deployment

• User’s expectations

• Verification: Coverage and assertions

• Standards
HLS Synthesis and Verification
Catapult Platform
Catapult - HLS Synthesis

• Synthesizes C++ and SystemC to production quality RTL

• “Full-Chip” applicability
 – Algorithms
 – Control-logic
 – Interfaces and protocols

• 10x design and verification productivity gains
 – Design space exploration for best QoR
 – Integrate last minute specification changes
 – Efficient retargeting of high-level IP
 – Correct-by-construction RTL
Sequential Logic Equivalence Checker
- Handles timing differences in internal computation and at interfaces

Verifies across the ESL to RTL continuum
- C property checking
- C-to-C formal verification
- C-to-RTL formal verification

Total verification confidence
- Eliminates risk of design inconsistencies
- No need for lengthy simulation runs
- Unlocks the full potential of ESL
Adoption

• Strength in wireless, image and video processing markets

• Adoption increasing worldwide as knowledge and confidence in methodology spreads

• 14 of top 20 semiconductor companies have multi-division deployment of HLS

• Continued steady growth in ASIC tapeout numbers
Adoption

- **Public User Testimonials**
 - Productivity Benefits > 5x
 - Higher for derivative designs
 - Enhanced with C-to-RTL formal equivalence checking
 - Verification benefits
 - Fewer bugs
 - C-to-RTL formal equivalence checking
 - QoR optimization through visibility, user control, incremental methodology
 - Power optimization through architectural exploration

- **Calypto’s Blue Book:**
 - minimize rampup and achieve best results

- **Ecosystem**
 - Silicon Vendor Partners
 - Certified EDA integrations
 - Leading RTL Synthesis, Simulators, RTL Equivalence, linting
 - Sequential Logic Equivalence
 - Power analysis and Optimization
Evolution of HLS Deployment

Discrete IP

Mega IP

Subsystem IP

Complete 1080p HD Video Accelerator

Calypto Design Systems
Customer Expectations

• HLS users expect to see the corresponding tools and flows that are available at the RTL level
 – Equivalence Checking
 – Power analysis and optimization flows
 – Assertion and property checking
 – Tools to check for C correctness
 • Check for out-of-bounds accesses
 • Check for use of undefined behavior
 – Tools to debug C++/SystemC
 – Linting tools
 – Coverage tools
 – ECO

• Synthesis Standard
Coverage-Driven HLS Verification Flow

- Support for Assertions and Cover Points
- Catapult propagates assertions and cover points from C to RTL
- Formally check assertions with SLEC
- Facilitates functional coverage in the HLS flow
- Accellera OVL support

```c
int alu(int a, int b, uint2 opcode)
{
    cover(opcode==ADD);
    cover(opcode==SUB);
    cover(opcode==MUL);
    cover(opcode==DIV);
    short r;
    switch(opcode) {
        case ADD:
            r = a+b;
            break;
        case SUB:
            r = a-b;
            break;
        case MUL:
            r = a*b;
            break;
        case DIV:
            assert(b!=0);
            r = a/b;
            break;
    }
    return r;
}
```
Standards are important for wide deployment

Accellera’s Synthesis Working Group refining the draft for standardization

What is covered:
- C++ syntax that is supported
- SystemC
 - Datatypes
 - Processes (SC_THREAD, SC_CTHREAD, SC_METHOD)
 - Signals, ports

What is not (yet) covered:
- Synthesis vs. TLM models for IO
- Verification

What needs to improve:
- Datatypes (bit-accurate integer, fixed-point)
Summary

- **Increasing Adoption**
 - Strengths in wireless, image and video processing

- **Verification is a key benefit that is driving adoption**

- **Ecosystem of tools around HLS**

- **Standards are important**